The role of communications and standardization in wind power
This paper presents an in-depth overview of the role and significance of IEC-based communications in wind power systems by reviewing the existing knowledge and worldwide
Accelerating energy transition towards renewables is central to net-zero emissions. However, building a global power system dominated by solar and wind energy presents immense challenges. Here, we demonstrate the potential of a globally interconnected solar-wind system to meet future electricity demands.
Theoretically, the potential of solar and wind resources on Earth vastly surpasses human demand 33, 34. In our pursuit of a globally interconnected solar-wind system, we have focused solely on the potentials that are exploitable, accessible, and interconnectable (see “Methods”).
Generating power from the wind will aid in the reduction of greenhouse gas emissions and in the conservation of natural resources for future generations. However, there are many technical challenges that hinder the large scale penetration of wind farm systems into the power system networks.
Its strong regulation capability, combined with the random fluctuations of wind and solar power, forms a complementary system that outputs relatively smooth and stable high-quality power, effectively solving the challenges of wind and solar energy development (Bello et al., 2023).
PDF includes complete article with source references for printing and offline reading.
Download detailed specifications for our photovoltaic containers, BESS systems, and mobile energy storage solutions.
Industrial Zone 15, ul. Fabryczna 24
Pabianice 95-200, Poland
+48 42 212 00 00
Monday - Friday: 8:00 AM - 5:00 PM CET