SECTION 6: BATTERY BANK SIZING PROCEDURES
Smallest cell capacity available for selected cell type that satisfies capacity requirement, line 6m, when discharged to per-cell EoD voltage, line 9d or 9e, at functional hour rate, line 7. OR, if no
The faster a battery can discharge, the higher its discharge rate. To calculate a battery's discharge rate, simply divide the battery's capacity (measured in amp-hours) by its discharge time (measured in hours). For example, if a battery has a capacity of 3 amp-hours and can be discharged in 1 hour, its discharge rate would be 3 amps.
The battery discharge rate is the amount of current that a battery can provide in a given time. It is usually expressed in amperes (A) or milliamperes (mA). The higher the discharge rate, the more power the battery can provide. To calculate the battery discharge rate, you need to know the capacity of the battery and the voltage.
In most substations, the 8-hour rate of discharge is the standard. It gives operators a solid 8-hour window to sort out any AC power supply issues before everything goes haywire. Important Note: We'll be using the IEEE Standard 485 for our substation battery sizing calculation. This standard helps us define DC loads and size lead-acid batteries.
Discharge is most often used to describe the volumetric flow rate of a fluid through an opening. In other words, how much of fluid is moving through an area every second. Enter the cross-sectional area and the fluid velocity into the calculator to determine the discharge rate.
PDF includes complete article with source references for printing and offline reading.
Download detailed specifications for our photovoltaic containers, BESS systems, and mobile energy storage solutions.
Industrial Zone 15, ul. Fabryczna 24
Pabianice 95-200, Poland
+48 42 212 00 00
Monday - Friday: 8:00 AM - 5:00 PM CET