Wind-solar technological, spatial and temporal complementarities
We exploit a rich dataset of simulated wind (onshore and offshore) and solar photovoltaics (PV) hourly CF for 30 years for European countries to explore the potential
Solarcontainer explained: What are mobile solar systems? The Solarcontainer represents a grid-independent solution as a mobile solar plant. Especially in remote areas it can guarantee a stable energy supply or support or almost replace a public grid with strong power fluctuations, as well as diesel generators that are used.
For solar PV, there are no consistent data on the spatial distribution of Europe's utility and rooftop PV systems. We therefore modelled a single crystalline PV installation in each grid cell of MERRA-2, specified at a resolution of 0.5° latitude and 0.625° longitude, and assigned each cell to its respective country.
Possible locations are therefore remote villages, development and crisis areas, mining, venues or deployments in extreme weather events. In order to be able to use the high PV output when there is limited sun exposure, the solar container can also be used in combination with an energy storage device.
We find that optimal cross-country coordination of wind and solar capacities across Europe's integrated electricity system increases capacity factor by 22% while reducing hourly variability by 26%. We show limited benefits to solar integration due to consistent output profiles across Europe.
PDF includes complete article with source references for printing and offline reading.
Download detailed specifications for our photovoltaic containers, BESS systems, and mobile energy storage solutions.
Industrial Zone 15, ul. Fabryczna 24
Pabianice 95-200, Poland
+48 42 212 00 00
Monday - Friday: 8:00 AM - 5:00 PM CET