Requirements for Shipping Lithium Batteries 2025
The primary risk associated with the carriage of lithium-ion batteries is thermal runaway. This is a chemical reaction in which an increase in temperature within a battery cell causes a further,
Apart from Li-ion battery chemistry, there are several potential chemistries that can be used for stationary grid energy storage applications. A discussion on the chemistry and potential risks will be provided.
This allows for crew access for boundary cooling with fire hoses and permits flammable gases to vent to the atmosphere. Segregation: It is recommended to segregate lithium battery containers from those containing other dangerous goods, particularly flammables, by at least one container bay (6 meters).
The primary risk associated with the carriage of lithium-ion batteries is thermal runaway. This is a chemical reaction in which an increase in temperature within a battery cell causes a further, uncontrolled increase in temperature. This process can be initiated by manufacturing defects, physical damage, or overcharging. The consequences include:
Revised Packing Instructions: More stringent requirements for UN-certified packaging, capable of withstanding specific drop tests. State of Charge (SoC) Emphasis: Increased scrutiny on the SoC for standalone lithium-ion battery shipments, with a general requirement not to exceed 30% of rated capacity.
PDF includes complete article with source references for printing and offline reading.
Download detailed specifications for our photovoltaic containers, BESS systems, and mobile energy storage solutions.
Industrial Zone 15, ul. Fabryczna 24
Pabianice 95-200, Poland
+48 42 212 00 00
Monday - Friday: 8:00 AM - 5:00 PM CET